Improved automated monitoring and new analysis algorithm for circadean phototaxis rhythms in Chlamydomonas

نویسندگان

  • Bruce Kessler
  • Christa Gaskill
  • Jennifer Forbes-Stovall
  • Claire A. Rinehart
  • Sigrid Jacobshagen
چکیده

Automated monitoring of circadian rhythms is an efficient way for gaining insight into oscillation parameters like period and phase for the underlying pacemaker of the circadian clock. Measurement of the circadian rhythm of phototaxis (swimming towards light) exhibited by the green alga Chlamydomonas reinhardtii has been automated by directing a narrow and dim light beam through a culture at regular intervals and determining the decrease in light transmittance due to the accumulation of cells in the beam. In this study, the monitoring process was optimized by constructing a new computer-controlled measuring machine that limits the test beam to wavelengths reported to be specific for phototaxis and by choosing an algal strain, which does not need background illumination between test light cycles for proper expression of the rhythm. As a result, period and phase of the rhythm are now unaffected by the time a culture is placed into the machine. Analysis of the rhythm data was also optimized through a new algorithm, whose robustness was characterized using virtual rhythms with various noises. The algorithm differs in particular from other reported algorithms by maximizing the fit of the data to a sinusoidal curve that dampens exponentially. The algorithm was also used to confirm the reproducibility of rhythm monitoring by the machine. Machine and algorithm can now be used for a multitude of circadian clock studies that require unambiguous period and phase determinations like light pulse experiments to identify the photoreceptor(s) that reset the circadian clock in C. reinhardtii.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved automated monitoring and new analysis algorithm for circadian phototaxis rhythms in Chlamydomonas.

Automated monitoring of circadian rhythms is an efficient way of gaining insight into oscillation parameters like period and phase for the underlying pacemaker of the circadian clock. Measurement of the circadian rhythm of phototaxis (swimming towards light) exhibited by the green alga Chlamydomonas reinhardtii has been automated by directing a narrow and dim light beam through a culture at reg...

متن کامل

Circadian rhythms of chemotaxis to ammonium and of methylammonium uptake in chlamydomonas.

Chlamydomonas reinhardtii expresses a well-documented circadian rhythm of phototaxis, which peaks in the subjective daytime. We find that vegetative cells also express circadian rhythms of chemotaxis to ammonium and ammonium uptake (as gauged by uptake of [(14)C]methylammonium). The chemotaxis rhythm peaks in the subjective night. Methylammonium uptake is light dependent, and its rhythm peaks a...

متن کامل

Update on the Circadian Clock in Chlamydomonas reinhardtii The Circadian Clock in Chlamydomonas reinhardtii. What Is It For? What Is It Similar To?

The physiology of the circadian (daily) clock has been well studied in the unicellular eukaryote Chlamydomonas reinhardtii. Circadian rhythms of phototaxis, chemotaxis, cell division, UV sensitivity, and adherence to glass have been characterized in this green alga. Circadian phototaxis was even shown to operate in outer space! The related phenomenon of photoperiodic time measurement of germina...

متن کامل

Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis

Microalgae possess great potential as a source of sustainable energy, but the intrinsic inefficiency of photosynthesis is a major challenge to realize this potential. Photosynthetic organisms evolved phototaxis to find optimal light condition for photosynthesis. Here we report a microfluidic screening using competitive phototaxis of the model alga, Chlamydomonas reinhardtii, for rapid isolation...

متن کامل

Comprehensive Analysis of Dense Point Cloud Filtering Algorithm for Eliminating Non-Ground Features

Point cloud and LiDAR Filtering is removing non-ground features from digital surface model (DSM) and reaching the bare earth and DTM extraction. Various methods have been proposed by different researchers to distinguish between ground and non- ground in points cloud and LiDAR data. Most fully automated methods have a common disadvantage, and they are only effective for a particular type of surf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016